PERMAS Component Generator

A VisPER add-on for launcher model fast generation

What is PCGen?

PCGen is a model generator, integrated to VisPER and specialized in quasi axisymmetrical structures. Although it generates meshes, PCGen is not a mesher. It aims at creating complete F.E. models with automatic nodes and elements sets, materials, properties, loadings (for example pressure in tanks and boosters) and analysis situations. Its primary purpose is to reduce the complexity of the whole F.E. model creation process, so it generates also automatic plans and reports.

Features

Being specialized and integrating standards whenever possible, PCGen tries to work with the minimal amount of inputs, allowing non-specialists to generate models in a safe and fast way. Interface’s information reflects the physical concept, and petty details such as local definition of material referential angle are kept out the way as much as possible.

Objects in PCGen are highly dynamic and connected, to avoid information duplication and to fasten variant generation, but also to allow for immediate feedback about geometries, masses, volumes... or inconsistencies that might arise during the edition. In fact, PCGen can also be used as a desktop calculator for a primary design verification, for example to get the analytical volume of a tank. In the future, it will integrate more dedicated tools for convenient inputs (analytical eigen-frequencies computation, analytical inertia, standards bolts dimensions, etc.).

Information duplication is also limited thanks to the use of inheritance. Objects are stored in a hierarchy, they inherit default material and properties from their parents, while mass is cumulated bottom-up.

PCGen generates quality PERMAS DAT files, keeping them compact and at a high level of abstraction, using loops or boolean definitions of sets. It also allows the user to comment each object, exporting $COMMENT and DESCRIPTION cards. Names are interactively corrected to be unique and abide by PERMAS rules.
Products

PCGen is not an all-purpose mesher, it is a specialized tool, that aims at integrating standards for model generation, as well as providing a convenient and adapted interface for model definition. Thus, it focuses mainly on the following products:

Shell structures

Pull and plug parts from a library.

Once parts are connected, their geometry are automatically adapted to each other, so one radius change for example calls for an automatic update of all parts.

Special quad-only mesher for bottom parts.

Shell property: handling of thickness variation.

Possibility to split a section and affect various properties along a line (for example, to modelize circumferential welds)

Volumic meshing of thick parts, with handling of the solid-shell transition, and generation of the fluid interface and pressurization skins whenever needed.

Nodes and elements numbering are related to their vertical and circumferential position (optional).

One minimum label, available for each object in PCGen, pilots the numbering of nodes, elements, local systems, lines and surfaces, and MPC definitions belonging to that object.

Laminate

Interactive edition of the laminate with preview

Systematic definition of the material referential whenever needed

Basic material database for the definition of homogeneous, sandwich, laminate and fluid materials

Quick definition or by ply definition of the material
Various equipments for shell parts

Stiffners system for any type of surface (ribs, belts or orthogrids)
- Direct control over mesh refinement.
- Mesh can be either compatible or incompatible with the shell part (in the later case, an MPC ISURFACE is created).

Punctual mass with suspension:
- on a rigid wheal or a WLSCON
- stuck on a wall
- Convenient input (equivalence mass-stiffness / frequency, formula for inertia of classical solids)

Circumferential flange

WLSCON wheal for centers of sections.

Non structural mass to simulate non modelized details or equipments, like thermal protection.

Bolted flanges

Library of standard nuts and bolts dimensions

Volumic mesh of the flange, bolts and nuts

Volume - shell transition

Generation of all needed surfaces and node sets for pretension and contact definition, export of the pretension card

Bolt pretension

Contact stabilization elements
Fluid tanks

Generation of the multiple variants based on this table:
- base systems,
- boundary limit conditions,
- loadings,
- pressurization situations,
- pressurized systems,
- etc.

Automatic determination of the cavity envelope for a given bottom

Possibly many fluid levels in the same model

Computation of the surface position from a target fluid mass

Computation of analytical volumes and masses for the whole cavity and for each level

Variant table
Central handling of the simulation situations for the fluid, containing pressurization data, acceleration and fluid weight, active fluid level and fluid boundary limit condition.

In progress Generation of the multiple variants based on this table:
- base systems,
- boundary limit conditions,
- loadings,
- pressurization situations,
- pressurized systems,
- etc.

Generation of UCI files (with model complement) for some standard tests (such as weight analysis, hydrostatic pressurization check, added mass, rigid body modes decoupling, etc.)

The corresponding RES files can then be parsed by PCGen, and results such as structure and fluid mass are compared with analytical masses (or target masses). Correction coefficients are also computed and can be input in PCGen.
Interface and workflow

PCGen allows the user to:
- **focus only on the current task**, using closable panels for each separated task (geometry, property, mass fitting, mesh parameters...)
- **go back and forth in the modelization process** to study variants: all objects being connected and highly dynamic, they can adapt to a late modification of geometry automatically.
- **keep an eye on all the relevant data** in the hierarchy tree. Anything edited by the user should stay well on sight.

Hierarchy tree
- Display needed informations
- Edit some data, like names or target masses

Clickable 2D view
- Clickable (for selection)
- Distance measurement tool

Editors
Closable, to display only the information needed at a given point of the workflow.
- Name and comment
- Geometries
- Properties
- Mass
- Mesh parameters

Log display
Generated files

XML database
Models are saved in an open xml format, to be re-loaded and modify later.

DAT file
Additionaly to the VisPER export, it is possible to generate a PERMAS DAT file, which is more compact than standard VisPER export, as it makes massive use of loops for example, or uses a compact definition for sets.
Some UCI command files for standard model tests, for example mass check, can be exported as well.

Plans
Plans of the geometry, material and properties affectations, mesh print are exported in **SVG format**.
SVG is a vectorial format that can be easily edited in Inkscape for example (free open-source software, Linux and Windows platforms). It can also be read in modern web browsers.

Report
Reports including plans, mass summary, mesh summary, material definition, comments about the model, etc. can be exported. PCGen also generates spreadsheets, for example mass summary.

Validity of the objects
With tooltip containing detailed error message
- Complete
- Errorneous

F.E. model in VisPER
PCGen is an add-on of VisPER. As it is integrated, it is possible at any step to push the model into VisPER to check its geometry, mesh, etc. Also, VisPER can read directly the XML model database generated by PCGen, the interpretation and meshing are done on the fly.

For more information, please contact us: permas@intes.fr +33 (0)1 34 83 19 89

©Copyright INTES France 2015 - Document revision 3 (April 2016)