PERMAS Spatial Structure Optimization

©Copyright INTES France, Rambouillet, 2023

Situations

PERMAS model organization is **modular**: loads, boundary conditions, etc. are defined in so-called variants, which are collected in situations, describing the conditions under which an analysis is performed. A single job can then solve various analyses in many situations. In an optimization process, the design constraints can refer to results from these multiple situations.

Structure variants

Meshes can be connected or **disconnected** on a situation basis. This allows to model structural changes, such as jettisonned parts, or here the position of the panels.

Topology optimization

PERMAS enforces a **clear-cut mater separation** during topology optimization, making the results useful for the designer.

Final hull

Final smoothed hull

Multi-modal optimization

- Shape (parametric or free)
- Sizing (shell thickness, laminate ply angles,...)
- Topology (element filling ratio, free sizing, laminate tailoring)

can be combined in one optimization.

Performance

The optimization converged in 32 loops. On a scientific laptop with 6 cores and 24 GiBytes available, the job ran out-ouf-core in 2.1 hours, that is less than **4 minutes per iteration**.

88,494 nodes 88,318 elements 317,000 unknowns **54,409 design variables** 41,897 elements for topology optimization

For more information about optimization with **PERMAS**, visit our website www.intes.fr or send us an email at point-contact@intes.fr

