PERMAS

Rotor Dynamics in V14

<table>
<thead>
<tr>
<th>Feature</th>
<th>Co-rotating reference system</th>
<th>Inertial reference system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic rotor</td>
<td>arbitrary shape</td>
<td>axisymmetric</td>
</tr>
<tr>
<td>Several rotors</td>
<td>one single speed</td>
<td>different speeds</td>
</tr>
<tr>
<td>Bearing stiffness</td>
<td>isotropic</td>
<td>arbitrary, speed dep.</td>
</tr>
<tr>
<td>Stator</td>
<td>no</td>
<td>arbitrary shape</td>
</tr>
<tr>
<td>Static analysis</td>
<td>subcritical</td>
<td>subcritical</td>
</tr>
<tr>
<td>Dynamic analysis</td>
<td>sub- and overcritical</td>
<td>sub- and overcritical</td>
</tr>
<tr>
<td>Additional matrices</td>
<td>geometric stiffness, centrifugal stiffness, Coriolis matrix</td>
<td>geometric stiffness, convective stiffness, gyroscopic matrix</td>
</tr>
<tr>
<td>Modal damping +</td>
<td>material, viscous</td>
<td>speed dep. bearing, material, viscous in stator</td>
</tr>
<tr>
<td>Campbell diagram in one analysis</td>
<td>with mode tracking and stability evaluation</td>
<td>with mode tracking and stability evaluation</td>
</tr>
<tr>
<td>Modal and direct response</td>
<td>harmonic, periodic (steady-state), in time domain</td>
<td>harmonic, periodic (steady-state), in time domain</td>
</tr>
<tr>
<td>Sizing and shape optimization</td>
<td>for rotor</td>
<td>for rotor, stator, and bearing</td>
</tr>
<tr>
<td>Active damping</td>
<td>of rotor</td>
<td>of stator and bearing</td>
</tr>
<tr>
<td>Model reduction</td>
<td>of rotor</td>
<td>of rotor and stator</td>
</tr>
</tbody>
</table>

This FE model was created using the geometry from http://grabcad.com/library/2-inch-diameter-3-stage-axial-jet-engine
Simplified rotor model of a gas turbine

For more information about PERMAS contact:

In France: INTES France
40 rue Sauli Carnot
78120 Rambouillet, France
Phone +33-1-3483 1989
Fax +33-1-3483 2028
E-mail: permas@intes.fr
http://www.intes.fr

In Japan: INTES Japan
6th floor, Sun Ikebukuro 2
2-24-4, Ikebukuro, Toshima-ku
TOKYO, Japan 170-0014
Phone +81-3-6915-2848
Fax +81-3-6915-2849
E-mail: info@intes.jp
http://www.intes.de

International: INTES GmbH
Schulze-Delitzsch Str. 16
70565 Stuttgart, Germany
Phone +49-711-78499-10
Fax +49-711-78499-10
E-mail: info@intes.de
http://www.intes.de

© Copyright INTES GmbH, February 2019

Strain energy distribution

Damping ratio

Orbit plot of complex modes

Frequency response due to unbalances

Speed-dependent bearing coefficients

Campbell diagram

PERMAS

Literature G. Creci et al.