PERMAS
Topology Optimization

Procedure:

- **Initial model:** A complete structure with Finite Element model and results is available (as reference).
- **Design space:** For that part of the structure, which has to be optimized, a design space will be defined and newly meshed, which uses the maximally allocatable volume.
- **Design objective:** The design objective and its constraints are defined.
- **Optimization:** The design is determined by a topology optimization including a smoothing of the surface.
- **New model:** The surface is exported and the design is newly meshed.
- **Comparison:** A new analysis of the complete structure with the new part is performed and the results are compared with the reference.

Bearing Support
Topological Optimization of a bearing support (courtesy of ZF Friedrichshafen AG).

The sound radiation of the housing was reduced by about 50%, while the weight of the housing was also reduced by about 50%.

Sound radiation power density at a selected frequency

Frequency response of cumulated sound radiation power

Optimized bearing support after surface smoothing

Design space with invariant regions (blue)

~50%

Frequency response of cumulated sound radiation power
(50% reduction of maximum amplitude)
Objectives and constraints
- Compliance
- Weight
- Static (Stiffness, reaction forces, displacements)
- Dynamic (real eigenvalues, frequency response of displacements, velocities, accelerations)
- Outside of design space stresses, element forces, sound radiation
- Composed constraints with arbitrary functions using the above listed quantities.

Model diversity
- Several load cases,
- Different design variants (like boundary constraints),
- Several analysis types (like static analysis with contact, dynamics with vibration modes and frequency response analysis),
- Substructuring.

Clear Shape
for a design close to final product

Manufacturing constraints
- Several and different release directions,
- Parting line,
- Symmetry (planar, axial, cyclic),
- Repetition of patterns,
- Maximum and minimum wall thickness,
- Frozen regions (not changeable, but part of design space),

Results
- Element filling ratio (with values near 0 and near 1),
- History plots of objective function and constraints,
- Hull generation and smoothing of surface,
- Polygon reduction and export of hull (as mesh or STL).

VisPER features the graphically guided description of optimization models:
- Defining the design space,
- Defining the design parameters,
- Selecting objective function and design constraints,
- Defining manufacturing constraints,
- Generation of a smoothed hull.

For more information about PERMAS contact:

In France: INTESTrance
40 rue Sadi Carnot
78120 Rambouillet, France
Phone +33-1-3483 1985
Fax +33-1-3483 2028
E-mail: permas@intes.fr
http://www.intes.fr

In Japan: INTESTJapan
6th floor, Sun kebekuuro 2-24-4, kebekuuro, Toshima-ku
TOKYO, Japan 172-0014
Phone +81-3-6915-2948
Fax +81-3-6915-2949
E-mail: info@intes.jp
http://www.intes.jp

International: INTEST GmbH
Schulze-Delitzsch Str. 16
70565 Stuttgart, Germany
Phone +49-711-78499-0
Fax +49-711-78499-10
E-mail: info@intes.de
http://www.intes.de

© Copyright INTEST GmbH, October 2016