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Abstract  

Moving loads are quite common in real life applications and are wide-
spread over various engineering disciplines with an increasing level of 
detail nowadays. Civil engineers are mainly interested in the vehicle-
bridge interaction problem, which is the most extensively studied type of 
moving load problem. Besides that train-track interaction, vehicle-
road/ground interactions are investigated. Ouyang [5] listed various 
moving load problems such as flexible discs, rotating beam/shafts and 
spindles, cranes, strings, and shells subjected to moving loads in a 
recent review article. The main difficulty to deal with moving mass 
problems in commercial finite element solvers is the fact that the system 
matrices of the second-order differential equation are inherently time-
varying. Although one should be aware of the fact that removing the 
time-varying character of the system matrices introduces some kind of 
error the assumption of a moving force is valid especially for low 
speeds. However, it is well known that this error increases with velocity. 
In addition, stability issues due to time-periodic crossings by a series of 
moving masses cannot be handled by the moving force approach. 
Therefore the moving mass problem is usually simplified by a moving 
force problem in order to reduce the numerical complexity of the 
problem. Thus only the right hand side of the equations of motion is 
affected by the travelling load. An example of a circular arch traversed 
by a moving force is used to demonstrate the procedure using the 
commercial finite element package PERMAS. The trajectory of the 
moving force is prescribed and the coupling itself is realized by a 
multipoint constraint. The displacement results of a beam model taken 
from the literature and a solid model used in the current study are 
compared. It appears that both approaches are in good agreement and 
justify the moving force approach in a first stage. 

1. Overview 

Dynamic characteristics of structures due to various moving forces is an 
important problem in engineering. A good overview of applications 
related to moving load problems is given by Ouyang [5]. Wu [12] 
investigated the vibration of a rectangular plate undergoing forces 
moving along a circular path. Experimental investigations of a multi-
span flexible structure subjected to moving masses are conducted by 
Stancioiu [9]. Laminated composite plates traversed by a moving mass 
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are studied by Ghafoori [2] and the moving oscillator by Mohebpour [4]. 
From a numerical point of view, the moving mass problem is more 
challenging than the moving force problem. This becomes even clearer 
if one takes a closer look at the underlying equations of motion. Special 
time-stepping procedures are developed for time-varying differential 
equations [11,14]. The moving mass problem is discussed in [1].The 
moving oscillator problem is tackled in [3,4,8] and for functionally 
graded simply supported Euler-Bernoulli beams in [6]. The separation 
and reattachment of moving oscillators is considered by Ouyang et. al. 
[8]. All FEM computations are carried out in PERMAS. PERMAS 
specific commands are highlighted by a preceding dollar sign and 
capital letters in the subsequent sections. 

2. Equations of motion 

The equations of motion for the moving force problem take the form 

� �� + � �� + � � = 
��  ,                                                                                        �1
       

where �, �, � are, respectively, the overall mass, damping and stiffness 
matrices,  ��� is the displacement vector and 
�� is the external force 
vector. The system matrices are time-invariant in that case.  

The moving mass problem is characterized by a linear time-varying 
system 
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due to the fact, that the inertia forces  
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are taken into account [11]. The influence of the different terms, i.e. 
conventional vertical inertia force, Coriolis force and centripetal force in 
(3) on the dynamic response is studied by Sharbati [7]. The last term in 
(3) vanishes for constant speeds. 

The moving load problem needs a special treatment in PERMAS. The 
DIRECT NLTIME procedure in combination with a $MPC UPDATE 
definition within the constraint variant is needed to capture the effect of 
the time-varying position of the load. The coupling of the moving load 
with the supporting structure is realized by a $MPC ISURFACE 
definition in the model file. Furthermore, we assume that the moving 
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load is in permanent contact with the supporting structure. Thus a 
possible separation is not considered here and can be found in 
Stancioiu [8].  

Finally the moving oscillator problem is considered. In that case, the 
moving mass is attached to the structure either by a spring or by a 
mass-spring assembly. When the oscillator slides over a straight beam, 
the coupled equations of motion are described by [8] 

#$  %���, �
  �% +  &'  ����, �

 �� =  −
( ��, ���� − ��   ,                                �4 

�* +� =  −, �+ − � − -�+� − ��  − �* �,                                                             �5 
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It can be shown, that the moving oscillator problem tends towards the 
moving mass problem for an infinite stiffness of the oscillator. 

3. Numerical Examples 

The first example is taken from Wu [12]. The finite element model is 
depicted in Fig. 1 and consists of 128 shell elements. Boundary 
conditions of the hinged-hinged plate are depicted by red, green and 
blue arrows corresponding to the direction of the constraints. The 
circular path is visualized by so-called plot elements. 
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Figure 1:  Rectangular plate subjected to a harmonic force (denoted by a red 
arrow) moving along a circular path. 

 

Table 1:  Geometrical and physical properties of the rectangular plate 

Length 8�  [m] 2.0 

Width 89  [m] 1.0  

Thickness � [m] 0.01 

Young’s modulus # [GPa] 206.8 

Density & [kg/m3] 7820. 

Poisson’s ratio ν 0.29 

Radius : [m] 0.3 
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A concentrated harmonic force  


;�� = 	 <		f	 sinΩ	t					;	t	C10	DsE		f	 sin 10	Ω	;		t	410	DsE 																																																																													�8 

with an excitation frequency Ω moves along a circular path with radius G 
and center H 	 D�( , I(	E with constant rotating speed J. The center H is 
coincident with the center of gravity of the rectangular plate. The current 
position of the moving force is realized by a prescribed motion of the 
corresponding node 

GK�� 	 G�� � GL	; 							G�� 	 	 GM � :	 NcosJ	�sinJ	�Q , 						GL 	 G�� 	 0,															�9 

where J denotes the rotational speed of the moving force. The 
influence of the excitation frequencies J,Ω on the response is illustrated 
in Fig. 2 and Fig. 3 for two different values. The first natural frequency 

of the hinged plated is JS 	 2T
S 	 37.1066	Drads E; the second is given 

by J� 	 107.201	Drads E. The time for one orbit is W 	 �	X
Y . The response of 

the center node is presented in Fig. 2 for a resonance excitation. In the 
second case, an excitation frequency between the first and second 
eigenfrequency is used. Other studies show similar results [12, 13]. 

 

Figure 2:  Time history for the vertical displacements of the centre of the hinged 
plate subjected to a single concentrated sinusoidal force moving along a circular 

path with a constant rotating speed J 	 Z 	 37.061	Drads E. 
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Figure 3:  Time history for the vertical displacements of the centre of the hinged 
plate subjected to a single concentrated sinusoidal force moving along a circular 

path with a constant rotating speed J 	 Z 	 99.195	Drads E. 

 

Table 2:  Geometrical and physical properties of the horizontally curved 
beam 

Cross-sectional area ' 	 [\ [m2] 5*1.8 

Total arc length 8 	 :	]̂ [m] 45.84*T/6 

Young’s modulus # [GPa] 32.2 

Poisson’s ratio ` 0.2 

Velocity �K [m/s] 40.0 

Force a [N] 293020. 
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The second example is taken from Yang [14] where curved beam 
elements have been used. In this study, the finite element model 
illustrated in Fig. 4 consists of 800 hexahedral elements. The properties 
are listed in Table 2. 

 

Figure 4: Horizontally curved beam subjected to a moving load P. 

The dynamic response of the horizontally curved beam subjected to a 
constant moving force with a 	 293020 [N] is depicted in Fig. 5. A 
perfect agreement of previously published results [13,14] is achieved. In 
addition, Fig. 6 depicts the vertical displacements of the upper beam 
surface on the middle line over time for all nodes on this line 
simultaneously. 
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Figure 5: Time history of vertical displacement at the middle point C of the 
simply supported horizontally curved beam subjected to a moving load.  

 

Figure 6: Vertical displacement field ��c, �	DmmE of the simply supported 
horizontally curved beam subjected to a moving load along the angular 

coordinate.   
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4. Conclusions 

Several examples from the literature are used to validate the procedure 
that is implemented in PERMAS for the moving force problem. Complex 
trajectories of the moving force can be easily implemented by a 
comprehensive function library.  
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