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Abstract 

The progressive climate change also requires a rethink in the automotive 
industry.  It is well-known that the heavier the vehicle is, the more energy it 
needs to get moving. For example, fuel consumption and pollutant emissions 
can be significantly reduced by optimizing the weight of automobiles.  

The use of innovative materials such as advanced composites, which have long 
been used in the aerospace industry, can also be used in future vehicle 
constructions to meet the energy consumption requirements. Regardless of the 
branch of industry, lightweight structures must be the goal of our efforts to use 
raw materials more sparingly. 

In that context, the CAE software must not only support laminates but also 
optimization methods with regard to their design. In the optimization of 
laminates, which can often be characterized by orthotropic material behavior, 
the layer thicknesses and ply angles are available as design parameters in 
addition to the material parameters. Constructive restrictions such as discrete 
ply angles, a symmetrical and balanced stack reduce the dimension of the 
optimization problem. 

Furthermore, the value ranges of the material characteristic values are subject 
to restrictions due to the positive definiteness of the strain energy, which differ 
depending on the underlying material law (e.g. transversal isotropic, 
orthotropic). 

This contribution analyses the application of optimization methods in the 
environment of laminate structures with respect to the identification of material 
parameters and the optimization of laminates with respect to certain target 
functions and corresponding constraints. 

Only a successful application of optimization methods in practice can increase 
the acceptance in design departments and thus justify the area-wide application 
of optimizations from the beginning of the product development process. All 
computations are carried out in PERMAS, whereas post-processing is done in 
VisPER and permasgraph. PERMAS specific keywords are denoted by capital 
letters and a preceding dollar sign in the subsequent text. 
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1. Introduction  

The optimization of laminates is a broad field with many application 
possibilities. Due to the anisotropy alone, the number of material parameters 
increases from 3 for isotropic material (E, ν, ρ) to 7 for anisotropic shell 
material (E1, E2, ν12, G12, G23, G31, ρ) or 10 (E1, E2, E3, ν12, ν23, ν13, G12, G23, 
G31, ρ) for general orthotropic behavior. In addition, there is the layer structure 
of the laminate, which allows the variation of angle α and thickness t per layer. 
All anisotropic materials require the definition of a material reference system 
$MATREF in the system variant. The orientation of the material reference 
system can be exported as a result by using DEFAULT SET VERIFICATION 
= RESULTS in the user control interface (*.uci) in order to check it afterwards 
with VisPER [17]. Within the laminate, the layers can in turn consist of 
different materials. Another possibility is to optimize the stacking sequence 
and the overall number of layers in a stack. This shows the complexity when 
considering the optimization of laminates [14]. However, stacking sequence 
optimization is not considered here and can be found elsewhere, e.g. [4, 7, 9, 
10, 12]. With the help of manufacturing constraints [4, 13, 15] one tries to 
reduce the number of design variables again. The usual manufacturing 
restrictions in the literature include discrete angles and thicknesses, a balanced 
symmetrical structure and a limitation of successive layers with identical 
angles. With regard to optimization, many different constraints are used.  These 
include displacement constraints, buckling factors, eigenfrequencies, 
compliance, mass, and failure criteria to name a few. 

The fully integrated optimization in PERMAS [16] supports laminates since 
version 17. Topology optimization based on a Solid Isotropic Material with 
Penalization (i.e. SIMP) approach is used to apply free sizing to laminate 
structures ($DVTPAR KIND = PLY) in order to get ply shapes from the 
optimized thickness distributions. This reflects the fact that for a ply stack 
under given fiber angles not all plies are needed over the entire structure to 
bear the loads. The result will specify the element sets which need to have a 
certain ply of the ply stack. Moreover, sizing of laminates is now supported, 
where ply thicknesses and angles can be optimized. The optimization itself is 
performed using one of the following algorithms: 
 

• CONLIN (Linear Convex Programming): A simple and robust method 
using analytical derivatives, only useful with linear analyses. 

• ACP (Adapted Convex Programming): This out of-core and 
parallelized solver is recommended for large optimization tasks, 
nonlinear behavior, and complex manufacturing conditions.  

• OC (Optimality Criteria Method): Used for freeform optimization tasks. 
 
More algorithms are available with module AOS (Advanced Optimization 
Solvers). This module provides additional optimization solvers which 
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essentially extend the range of applications for the integrated optimization in 
PERMAS. The extensions are as follows: 
 

• By Trust Region method based local methods adaptive step-size control 
is facilitated. This extends the previous static modification limit chosen 
by the user. 

• Trust region methods keep track of the best point. They reject points, 
where no improvement is achieved. This extends the previous methods, 
where any new point is accepted. 

• Methods for derivative-free optimization and global optimization are 
available. 

 
The local methods include the following derivative based methods: 
 

• SQP (Sequential Quadratic Programming). This is a damped Newton 
method combined with an active set strategy for the optimality 
equations. It is the best general-purpose method (but not necessarily in 
structural mechanics). Second order information is available by BFGS 
update. 

• SLP (Sequential Linear Programming): This method uses only linear 
approximation. Usually, it is slower than SQP due to missing 2nd order 
information. It is sometimes more robust than other gradient based 
methods (e.g. in the case of steep gradients). 

• SCP (Sequential Convex Programming): Usually, best-of-class method 
for classical optimization problems arising in structural mechanics. 
Module OPT uses a method which belongs to SCP class of optimization 
methods. 

When derivatives are not available, e.g. in contact problems or nonlinear 
material behavior, or when the accuracy of computed derivatives is not 
sufficiently high (like sometimes in frequency response analysis), then 
derivative-free methods can be applied. The new derivative-free (local) 
methods comprise the following approaches: 

• Derivative-based methods using finite differences (with SQP, SLP, 
SCP). Functions should be smooth enough and the choice of the finite 
difference parameter for the interval should not be a problem. 

• Derivative-free method WLIN (Wedge constraint, Linear 
approximation). There is no need to choose a finite difference 
parameter. This method can be used for noisy problems. 

When global minima have to be found, local methods are not appropriate any 
more. For such global optimization tasks, the following approaches are 
available: 
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• By applying the Multi-Start method (MS) and using random points 
derivative-based methods can be used to localize minima. This is 
combined with keeping track of the best point. This approach can be 
seen as an automatic trial method. A maximum number of loops is used 
to terminate the analysis. 

• Another method is LDR (Locally improved variant of the Dividing 
Rectangles (DiRect) algorithm). This method has been generalized to 
work with constrained problems. It could be improved by solving local 
subproblems. It generates a sequence of points that is dense in the 
design space and hence guarantees to approximate the global solution. 
Because this method is slow and only useful for small models, a 
suitable model reduction is highly recommended. 

 
Optimization is equipped with a general break/restart facility. To this end, a 
running optimization can be stopped and restart files are prepared. So, the 
restart can be made at any already performed optimization loop. Before restart, 
optimization parameters can be modified to influence the convergence 
behavior of the optimization. The restart uses the restart file to continue the 
optimization from the already reached status. 
$DVMPAR is used to relate a design variable to a certain property (thickness 
and or angle) of a ply. Ply failure criteria ($DCONSTRAINT PLYFAILURE) 
may be used as constraints for the laminate sizing optimization. Standard 
failure criteria such as Tsai-Wu and Hoffmann are directly available, whereas 
additional criteria can be defined by own user functions. 
Laminates are defined within the MATERIAL block using $LAMINATE with 
two different options DESTYPE = {PLY, MATRIX}.  The former (default) 
option requires an additional $PLY statement, that is used to define the 
stacking sequence. The second option is related to the classical laminate theory 
(CLT) using the A, B, D stiffness matrices. The extended laminate theory 
(ELT) considers a transverse shear stiffness matrix G. This relationship is 
defined via the material definition in combination with DESTYPE = MATRIX. 
The stacking sequence can be redefined by $PLYDAT within the system 
variant. 

 

2. Examples 

The first example is taken from [5] and is used to illustrate the free sizing 
capabilities of PERMAS. The shape of the shell is defined by a bivariate 
polynomial z(x,y) = h-(2h/L2)[(x-L/2)2+(y-L/2)2], 0 ≤ 𝑥𝑥, 𝑦𝑦 ≤ 500, where h 
denotes the apex and L the length and width, respectively. The shell is loaded 
by a nodal point force Fz=-100 N and the displacements at the four corner 
nodes are suppressed (u=v=w=0).  The shell consists of 8 layers [0°,45°,          
-45°,90°]S and 80x80 SHELL4 elements. The initial thickness of each layer is 
t=2 mm and may be varied in the interval [0.1,2] mm. The objective is to 
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minimize the weight subjected to a displacement constraint at the apex in z-
direction. The material properties of GFRP are E1= 38 [GPa], E2=E3= 9 [GPa], 
G12=G13= 3.6 [GPa], ν12=ν13=ν23= 0.3 and ρ=1.87E-09 [t/mm3]. The 45° and -
45° layers are assigned to the same design element during the optimization, in 
order to obtain a balanced stack. 

 

Figure 1:  Boundary conditions and loads of a corner hinged shell 

Fig. 2 shows the thickness distribution in the different layers. Red color 
denotes the maximum thickness, whereas blue color denotes the minimum 
thickness of the corresponding layer.  

 

Figure 2:  Thickness distribution for α=0°, α=±45°, α=90° (from left to right) 

The second and third example is taken from [11]. Fig. 3 illustrates a laminated 
cylinder. The objective is to minimize the weight subjected to an 
eigenfrequency constraint for the first eigenfrequency f1> 1155 [Hz]. The 
thickness of the plies 1,2,4 tend towards the lower bound, whereas the 
thickness of the fifth ply tend towards the upper limit (Fig.4). 
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Figure 3:  Laminated cylindrical shell: L=200 [mm], R=50 [mm], [90°,0°,45°,0°,90°], 
ti=0.4, E1=137.9 [GPa], E2=10.34 [GPa], ν12=0.29, G12=G13=6.89 [GPa], G23=3.9 
[GPa], ρ=1.0E-09 [t/mm3] 

 

 

Figure 4:  Optimization results of the laminated cylindrical shell 

The third example is a U-shaped profile (Fig. 4) with a length L=200 [mm], 
width w=150 [mm] and height h=40 [mm]. The whole model is divided into 5 
parts, which are highlighted by different colours. The material parameters are 
given by E1=137.9 [GPa], E2=10.34 [GPa], ν12=0.29, G12=G13=6.89 [GPa], 
G23=3.9 [GPa] and ρ=1.0E-09 [t/mm3]. One end of the profile is clamped. The 
finite element model consists of 4958 SHELL4 elements and 5100 nodes. All 
five parts have the asymmetric stacking sequences [0°,45°,-45°,0°,-45°,45°,0°]. 
The objective is to maximize the fundamental eigenfrequency by varying the 
ply angles of the three parts in the xz-plane. Fig. 5 depicts the evolution of the 
design variables and the objective function. The first eigenfrequency is raised 
from 826 Hz to 939 Hz. 
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Figure 5:  U-shaped profile 

 

Figure 6:  Objective function and design variables 

The last example is taken from [1] and focuses on a shape optimization of a 
cantilever composite plate with a central circular hole. The width w and the 
diameter d of the hole are introduced as design variables. Due to the mesh 
morphing capabilities no remeshing is needed during the shape optimization. 
The goal of the optimization is to minimize the weight subjected to an 
eigenfrequency constraint f1> 155 [Hz]. The material properties used for the 
composite layers are E1=156.5 [GPa], E2=E3=15.65 [GPa], G12=G13=5.19 
[GPa], G23=1.98 [GPa], ν12=0.32, ν23 =0.35 and ρ=1.77E-09 [t/mm3]. The 
symmetric stacking sequence is given by [0°, -45°, 45°, 90°]S. The total 
thickness of the plate is given by ∑ 𝑡𝑡𝑖𝑖8

𝑖𝑖=1 = 2.26 [mm]. The red and blue arrow 
in Fig. 6 denotes the design variables that control the variation of the width and 



Weight Reduction Through Composites and Optimization 

NAFEMS World Congress 2019, Quebec 17-20 June 2019 Page 8/10 

the diameter. Additional planar and axial symmetries for the two design 
elements and $DERESTRAINT BOUND definitions guarantee that the circular 
form of the hole is retained when the width is modified. Conversely, a variation 
of the diameter does not lead to a mesh modification of the contour of the 
beam. The length of the beam is L=140 [mm]. The initial width and radius are 
given by w=25 [mm] and r=3.25 [mm], respectively. Fig. 7 illustrates the 
results of the shape optimization. The design is feasible, since active 
constraints reach ± 100% and violated constraints exceed ± 100%. 

 

 

Figure 7:  Finite element model of the cantilever beam 

 

Figure 8:  Results of the optimization: Objective function, Design variables and relative 
constraint history 
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3. Summary and Outlook 

Various optimization possibilities have been demonstrated in connection with 
laminates using several examples from the literature. The results are promising 
and motivate to increase the use of laminates in practice. Many other aspects 
such as the inclusion of failure criteria and optimization with regard to 
buckling factors [6, 8, 9] and sound radiation are in preparation. 
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