VPE Swiss Workshop Akustik Simulation 12. Sept. 2013

Fluid-Struktur-Akustik als Analyse mit bidirektionaler Kopplung und Schalldurchgang

Reinhard Helfrich

INTES GmbH, Stuttgart

info@intes.de

www.intes.de

INTES Ingenieurgesellschaft für technische Software mbH

Unabhängiges Unternehmen für Finite Element (FE) Technologie seit 1984 mit Niederlassungen in Stuttgart, Paris und Tokio

Das Angebot umfasst die eigene FE-Berechnungssoftware PERMAS mit VisPER, Softwareentwicklung im PERMAS-Umfeld und Berechnungsdienstleistungen

Integrierte Software für Thermomechanik, Vibroakustik und Optimierung

Hohe Rechenleistung durch Parallelisierung (über Multithreading) und spezielle Algorithmen (Kontakt, MLDR, Fluid-Struktur-Akustik)

Einheitliche Konzepte für inkompatible Netze, Teilstrukturtechnik, Submodelle

Simulationsgetriebener Entwurf durch integrierte Optimierung (Topologie, Form, Dimensionen, Sicken) mit lokalen und globalen Methoden

INTES GmbH ichulze-Delitzsch-Str. 16 D-70565 Stuttgart Tel +49-711-78499-0 Fax +49-711-78499-10 E-Maii: info@intes.de http://www.intes.de

1984: Beginn der Software-Industrialiserung und neuer Entwicklungen für Optimierung, Akustik und Zuverlässigkeit

- 1989: Beginn eines vollständigen Neuentwurfs der Software für höhere Entwicklungsgeschwindigkeit und Nastran-Verträglichkeit
- 1993: PERMAS Version 5 verfügbar, der neuen Softwarebasis für die weitere Entwicklung
- 2005: Beginn der Entwicklung einer neuen graphischen Benutzerschnittstelle VisPER (Visual PERMAS)

2008: VisPER Version 1 einsetzbar

PERMAS

Fluid-Struktur-Akustik

- Methoden der Strukturdynamik (Schwingungen)
- Anwendung auch auf Fluide allein (Akustik) und auf Strukturen, die mit Fluiden gekoppelt sind (Fluid-Struktur-Akustik)
- Dadurch Erweiterung der klassischen Strukturmodelle um die angrenzenden Fluidmodelle mit einer geeigneten Kopplung
- Diese Kopplung wird physikalisch durchgeführt, d.h. die normale Verschiebung der Struktur ist stets gleich der normalen Verschiebung des Fluids

Beispiel für Fluid-Struktur-Akustik

Fluid-Modell mit Finiten Elementen

©INTES GmbH, 2013, Stuttgart, Germany

VPW Swiss Workshop Akustik Simulation 12. Sept. 2013

Seite 5

Kopplung von Struktur und Fluid

VPW Swiss Workshop Akustik Simulation 12. Sept. 2013

Seite 6

Abstrahlung

Reflexionsfreie Grenzfläche über Abstrahlrandbedingungen, z.B. kugelförmige Grenzfläche nach Bayliss-Turkel

Oberflächenwellen

Mitbewegte Masse

- Oft genügt es für die strukturdynamische Analyse, dass man ein umgebendes oder eingeschlossenes Fluid (wie das umgebende Wasser bei Schiffen oder das Fluid in einem Tank) als Masse mitnimmt.
- Dabei kommt es darauf an, die Massenverteilung korrekt zu erfassen.
- Durch eine Modellierung des Fluids wird das ermöglicht.
- Selbst ein unendlich ausgebreitetes Fluid (wie bei einem Schiff) kann über halbunendliche Elemente n\u00e4herungsweise erfasst werden.

z

Eigenwerte

	Akustik Reelle Eigenwerte und Eigenformen Statische Zusatzmoden		Fluid alleine	Fluid gekoppelt mit Struktur	
			ja	gekoppelt, mit Energieverteilung	
			ja	ja	
Dy Kol		amische Iensation	nach Craig-Bampton	trocken (nur auf Verschiebungsfhg.) oder benetzt (auch auf Druckfhg.)	
Verschi Reelle gekoppelte Eigenschwingung	ebung			Dr	uckverteilung
eines Kaketentanks					

Energieverteilung in gekoppelten Eigenformen

- Relative Verteilung der Energie auf Struktur und Fluid für die Eigenformen
- erlaubt die Identifikation von struktur-dominanten, fluid-dominanten und stark gekoppelten Moden

Es sind zwei Optionen zur dynamischen Kondensation verfügbar:

- 'Benetzte' Kondensation
 - Getrennte Berechnung von Struktur- und Fluidmoden in Teilstrukturen. Die externen Moden sind Verschiebungs- und Druckmoden.
 - Die Gesamtlösung besteht in einer gekoppelten Schwingungsanalyse.
- 'Trockene' Kondensation
 - In den Teilstrukturen wird ein gekoppeltes Eigenwertproblem gelöst, d.h. die Fluidkomponente wird isoliert. Die externen Moden sind gekoppelte Moden (ohne Druckfreiheitsgrade).
 - Die Gesamtlösung ist ein rein strukturdynamisches Problem, da keine Druckfreiheitsgrade mehr vorhanden sind.
 - Erleichtert die Nutzung akustischer Komponenten in ansonsten nur mechanisch aufgebauten Komponenten (dabei bleibt die Möglichkeit der Rückrechnung auf die Druckfreiheitsgrade erhalten).

Motor mit Anbauteilen

Alle Bilder mit freundlicher Genehmigung der Daimler AG

Spezifische Körperschallleistung als Indikator für Luftschallentstehung

Dynamische Antwort

Annahme: $\lambda \gg t$

Innengeräusche eines SUV

Einführung

- Körperschall- und Luftschallanregung für Rohkarosserie (BIW) und 'Trimmed Body'
- Vergleich von Messung (durchgeführt von Autoneum, Winterthur, Schweiz) und Berechnung (durchgeführt von INTES)

Messpunkte

- Die Messpunkte sind in folgenden Bereichen angeordnet:
 - 1) Instrumententafel (links und rechts)
 - 2) Boden (links und rechts, vorne und hinten)
 - 3) Tunnel (links, oben und rechts)
 - 4) Radkasten (links und rechts)
 - 5) Vier Mikrophone im Inneren

Beschleunigungsaufnehmer

Mikrofone

Körper- und Luftschallanregung

- Berechnungsart: Eigenwertanalyse Modaler Frequenzgang
- Anregungen (Sinus von 5 bis 500 Hz):
 - 1) Körperschall

Messgrößen

- Messgrößen für die Korrelation:
 - v/F Transfer functions (RMS normal velocity / input force)
 - p/F Transfer functions (RMS microphone SPL / input force)
 - v/Q Transfer functions (RMS normal velocity / volume velocity acoustic source)
 - p/Q Transfer functions (RMS microphone SPL / volume velocity acoustic source)

$$v_{RMS} = 20 \log_{10} \left(\frac{\sqrt{\sum_{i=1}^{N} v_i^2}}{N} \right)$$

$$p_{RMS} = 20 \log_{10} \left(\frac{\sqrt{\frac{\sum_{i=1}^{N} p_i^2}}{N}}{p_0} \right)$$

$$v_0 = 1000 \text{ mm/s}$$

$$p_0 = 2.10^{-11} \text{ MPa}$$

• Die Korrelation zwischen Simulation und Messung wurde ausgewertet mit dem "Frequency Response Assurance Criterion" (FRAC).

$$FRAC = \frac{\left(\sum_{f_i}^{f_{\max}} FRF_{meas}(f_i)FRF_{cal}(f_i)\right)^2}{\sum_{f_i}^{f_{\max}} FRF_{meas}^2(f_i)\sum_{f_i}^{f_{\max}} FRF_{cal}^2(f_i)}$$

 $FRF_{\alpha}(f_i)$

 $\alpha = meas, cal$

Vergleich Körperschall BIW Messung/Berechnung

$\textcircled{\sc constraint}$ INTES GmbH, 2013, Stuttgart, Germany

Vergleich Körperschall BIW Messung/Berechnung

Vergleich Luftschall BIW Messung/Berechnung

©INTES GmbH, 2013, Stuttgart, Germany

Vergleich Luftschall BIW Messung/Berechnung

Fahrzeug mit Dämmung (TB - Trimmed Body)

• Es wurden 80 gedämmte Bereiche berücksichtigt

Kinematische Fluid-Struktur-Kopplung

TB mit 80 gedämmten Bereichen

Kopplung mit Dämmung

 Die physikalische Beschreibung des Dämmmaterials (und der daraus ermittelten Impedanzmatrizen) erfolgt direkt auf den Kopplungselementen (unter Verwendung einer Software von Autoneum, Winterthur, Schweiz).

Vergleich Körperschall TB Messung/Berechnung

Vergleich Körperschall TB Messung/Berechnung

Vergleich Luftschall TB Messung/Berechnung

Vergleich Luftschall TB Messung/Berechnung

Zusammenfassung

- Akustik als Erweiterung der Strukturdynamik
- durch eine bidirektionale Kopplung von Druck- und Verschiebungsfreiheitsgraden
- für alle Fluide (Gase und Flüssigkeiten)
- Direkte und effiziente Ermittlung der gekoppelten reellen Eigenwerte und Eigenformen
- Dynamische Kondensation auf Verschiebungsfreiheitsgrade ("trockene" Kondensation) z.B. für MKS-Berechnungen
- Modale und direkte Verfahren für die dynamische Antwort im Zeit- und Frequenzbereich
- Innen- und Außenfluid in einem Modell, damit direkte Schalldurchgangsberechnungen